Радиация в атмосфере

Главным источником энергии почти всех процессов, развивающихся в атмосфере, является Солнце. Именно оно непрерывно излучает громадное количество лучистой энергии. Лучистая энергия Солнца, или солнечная радиация, включающая и видимую часть спектра, является одновременно источником света.

Солнечная радиация в виде электромагнитных волн распространяется от излучателя — Солнца — со скоростью, близкой к 300 000 км/с. Электромагнитными волнами называются распространяющиеся в пространстве колебания, т. е. периодические изменения электрических и магнитных сил. Они вызываются движением электрических зарядов в излучателе. Наша планета получает такую радиацию от Солнца. Земная поверхность и атмосфера в то же время сами излучают тепловую радиацию, но в других диапазонах волн. Длины волн радиации измеряют в единицах, значительно меньших, чем микрометр (1 мкм = 10-6 м). Тысячная доля микрометра — это 1 нанометр (1 нм).

На пути распространения от внешних пределов атмосферы до земной поверхности солнечная радиация подвергается ряду существенных изменений. Они происходят вследствие процессов поглощения, отражения и рассеяния радиации.

Значительная часть солнечной радиации достигает земной поверхности в виде параллельного пучка лучей на освещаемой поверхности земного шара — прямая солнечная радиация. Некоторая часть радиации, рассеянной в атмосфере, поступает на земную поверхность как рассеянная радиация от всех точек небесного свода. Прямая солнечная радиация и рассеянная в сумме их поступления дают суммарную радиацию.

Солнечная радиация, поступающая на земную поверхность, частично отражается от неё, но большая её часть поглощается этой поверхностью и идёт на её нагревание.

Та часть солнечной радиации, которая отражается земной поверхностью, а также атмосферой (в основном облаками), носит название отражённой радиации.

Вместе с тем, нагретая земная поверхность сама является источником теплового излучения, направленного к атмосфере. Это так называемое земное излучение, или земная радиация. В свою очередь сама атмосфера излучает радиацию. Это излучение частично достигает поверхности Земли, а частично в атмосфере образует противоизлучение атмосферы — уходящее излучение атмосферы.

В атмосфере имеется целая система потоков лучистой энергии, разнообразных по их спектральному составу и различно направленных. В метеорологии принято выделять коротковолновую и длинноволновую радиацию. Прямую и рассеянную солнечную радиацию называют коротковолновой. Излучение Земли и атмосферы относят к длинноволновой радиации.

Коротковолновой радиацией называют радиацию в диапазоне волн от 0,1 до 4 мкм. Она включает, кроме видимого света, ещё ближайшую к нему по длинам волн ультрафиолетовую и инфракрасную радиацию. Солнечная радиация на 99 % является коротковолновой радиацией. К длинноволновой радиации относят радиацию земной поверхности и атмосферы с длинами волн от 4 до 100–120 мкм.

Оценивая с энергетической стороны сумму всех потоков лучистой энергии на земной поверхности, можно найти приходо-расход энергии для некоторой поверхности — радиационный баланс.

Солнечная постоянная радиации и спектральное распределение солнечного излучения

Поток солнечной радиации перед поступлением её в земную атмосферу оценивают как солнечную постоянную. Эта величина не зависит от поглощения и рассеяния радиации в атмосфере. Она относится к радиации, на которую ни атмосфера, ни земная поверхность ещё не повлияла. Солнечная постоянная зависит только от излучательной способности Солнца. Она равна 1,353 кВт/м2.

Солнечная радиация, приходящая на верхнюю границу атмосферы, охватывает широкий диапазон — от жёсткого рентгеновского до ближнего инфракрасного излучения. Спектральное распределение солнечного излучения определяется физическими характеристиками Солнца как звезды и особенностями процессов, происходящих в фотосфере, атмосфере Солнца и его короне. В целом спектр излучения Солнца приближается к спектру абсолютно черного тела, температура которого составляет около 5900 °К. Подавляющая часть энергии солнечного излучения (≈97 %) приходится на интервал длин волн электромагнитного спектра (0,3–3,0 мкм), причём 53,5 % — на интервал 0,4–0,7 мкм, т. е. на видимую область.

Распространяясь в атмосфере, солнечное излучение взаимодействует с атмосферными газами, облаками, твёрдыми и жидкокапельными аэрозольными частицами, взвешенными в воздухе. В результате такого взаимодействия в атмосфере происходит рассеяние, поглощение и преломление электромагнитных волн.

Рассеяние солнечного излучения приводит в целом к увеличению отражательной системы Земля — атмосфера.

Поглощение солнечного излучения приводит к уменьшению отражательной способности системы Земля—атмосфера, нагреванию атмосферы и подстилающей поверхности.

Рентгеновское и ультрафиолетовое излучение Солнца поглощается почти полностью уже на больших высотах в атмосфере. Наиболее активно солнечное излучение поглощают так называемые малые газовые составляющие — Н2О, СО2, О3, NOx, CH4, фреоны.

В целом все процессы взаимодействия солнечного излучения с атмосферой и подстилающей поверхностью приводят к перераспределению лучистой энергии, приходящей на её верхнюю границу, и переходу части этой энергии в другие формы — тепловую, кинетическую, скрытое тепло и т. д.

Тепловая радиация имеет длины волн от сотен микрометров до тысячных долей микрометра.

Тепловую радиацию с длинами волн от 0,01 до 0,39 мкм называют ультрафиолетовой. Она невидима и не воспринимается человеческим глазом. Радиация от 0,39 до 0,76 мкм — это видимый свет, воспринимаемый глазом. Свет с длиной волны около 0,40 мкм — фиолетовый, с длиной волны около 0,76 мкм — красный. На промежуточные длины волн приходится свет всех цветов спектра.

Радиация с длинами волн больше 0,76 мкм и до нескольких сотен микрометров называется инфракрасной, она так же, как и ультрафиолетовая, невидима.

Поле инфракрасной (тепловой) радиации в атмосфере в интервале длин волн 4–120 мкм формируется за счёт собственного теплового излучения земной поверхности, излучения активных газовых и аэрозольных компонентов атмосферы (пыль, облака, туманы), а также излучения Солнца в длинноволновом участке электромагнитного спектра.

Пространственная и временная изменчивость инфракрасной радиации в атмосфере связана с изменениями инсоляции земной поверхности, степенью закрытости небосвода облачностью, изменениями в содержании основных поглощающих и излучающих компонентов.

В целом и атмосфера, и подстилающая поверхность охлаждается посредством инфракрасного радиационного обмена.

Некоторые вещества в особом состоянии излучают радиацию в большом количестве и в другом диапазоне длин волн, чем это следует по их температуре. Эта радиация, не подчиняющаяся законам теплового излучения, позволяет некоторым веществам испускать видимый свет (люминесценция). Люминесценцией объясняются полярные сияния и свечение ночного неба.

Прямая солнечная радиация

Солнечная радиация распространяется от Солнца по всем направлениям. В результате поглощения и рассеяния радиации в атмосфере не вся солнечная радиация, поступившая на её верхнюю границу, доходит до поверхности Земли. Радиацию, приходящую к земной поверхности непосредственно от Солнца, называют прямой солнечной радиацией.

Количественной мерой солнечной радиации, поступающей на земную поверхность, служит энергетическая освещённость или поток радиации — количество лучистой энергии, падающей на единичную площадку.

Энергетическая освещённость выражается в киловаттах на квадратный метр (кВт/м2). При благоприятных условиях в атмосфере на поверхности Земли поток прямой радиации может быть равен 1,05 кВт/м2.

Поток прямой солнечной радиации на горизонтальную поверхность часто называют инсоляцией.

Рассеянная солнечная радиация

Рассеянием солнечной радиации называется частичное преобразование радиации, имеющей определённое распространение, в радиацию, идущую по всем направлениям в оптически неоднородной среде — атмосфере, содержащей мельчащие частицы жидких и твёрдых примесей, где показатель преломления изменяется от точки к точке.

Прямая солнечная радиация в атмосфере ослабляется путём её рассеяния. При этом рассеяние радиации тем больше, чем больше аэрозольных примесей содержит воздух. Около 25 % общего потока солнечной радиации превращается в атмосфере в рассеянную радиацию.

Рассеянная радиация отлична от прямой радиации по спектральному составу. Дело в том, что лучи различных длин волн рассеиваются в разной степени.

Воздух прозрачен в тонком слое, как прозрачна в тонком слое вода. Но в мощном слое атмосферы воздух имеет голубой цвет, подобно тому, как и вода уже в сравнительно малой толще (в несколько метров) имеет зеленоватый или васильковый цвет. Голубой цвет воздуха можно видеть, не только наблюдая небесный свод, но и рассматривая отдалённые предметы, которые кажутся окутанными голубоватой дымкой.

Голубой цвет безоблачного неба обусловлен рассеянием в нём солнечных лучей в молекулах воздуха. С высотой, по мере уменьшения плотности воздуха, т. е. количества рассеивающихся частиц, цвет неба становится темнее и переходит в густо-синий, а в стратосфере — в чёрно-фиолетовый.

Рассеяние меняет окраску прямого солнечного света. Солнечный диск кажется тем желтее, чем он ближе к горизонту, т. е. чем длиннее путь лучей через атмосферу и чем больше рассеяние. У горизонта солнце становится почти красным, особенно когда в воздухе много пыли и мельчайших продуктов конденсации (капель или кристаллов). Рассеяние солнечной радиации в атмосфере обуславливает рассеянный свет в дневное время.

Чем больше в воздухе примесей более крупных размеров по сравнению с молекулами, тем больше доля длинноволновых лучей в спектре солнечной радиации и тем белесоватее становится окраска небесного свода. Отдалённые предметы при тумане, дымке и пыльной мгле заволакиваются не голубой, а белой или серой завесой по причине рассеяния радиации. Облака, на которые падает солнечный свет, кажутся нам белыми по той же причине.

После захода солнца вечером темнота наступает не сразу. Небо, особенно в той части горизонта, где зашло солнце, остаётся ещё некоторое время светлым и посылает к земной поверхности постепенно убывающую рассеянную радиацию. Аналогичную картину мы можем наблюдать утром: небо после ночи начинает светлеть ещё до восхода солнца. Это явление неполной темноты носит название сумерек — вечерних или утренних. Причиной его является освещение солнцем, находящимся под горизонтом, высоких слоёв атмосферы.

Так называемые астрономические сумерки продолжаются вечером до тех пор, пока солнце не зайдёт под горизонт на 18º. К этому моменту становится настолько темно, что различимы слабые звёзды. Утренние сумерки начинаются с момента, когда солнце имеет такое же положение под горизонтом. Первая часть вечерних астрономических сумерек или последняя часть утренних, когда солнце находится под горизонтом не ниже 8º, носит название гражданских сумерек.

Продолжительность гражданских сумерек изменяется в зависимости от широты и времени года. В средних широтах они длятся от полутора до двух часов, в тропиках — меньше, а на экваторе — немногим дольше одного часа.

В высоких широтах летом солнце может опускаться под горизонт очень неглубоко или не опускаться под горизонт вообще. Если солнце опускается под горизонт менее, чем на 18º, то полной темноты не наступает, а вечерние сумерки сливаются с утренними сумерками. Это явление называют белыми ночами.

Сумерки сопровождаются изменениями окраски небесного свода. Эти изменения начинаются ещё до захода или продолжаются после восхода солнца. Они имеют довольно закономерный характер и носят название зари. Характерные цвета зари — пурпурный и жёлтый. Интенсивность и разнообразие цветовых оттенков зари изменяется в широких пределах в зависимости от содержания аэрозольных примесей в атмосфере. Разнообразны и тона освещения облаков в сумерках.

Явления зари объясняются рассеянием света мельчайшими частицами атмосферных аэрозолей и дифракцией света на более крупных частицах.

Поглощение солнечной радиации

Поглощение и рассеяние солнечной радиации в атмосфере несколько ослабляет поток солнечной радиации, проходящий сквозь атмосферу к земной поверхности.

Поглощается в атмосфере сравнительно небольшое количество солнечной радиации. Преимущественно это относится к инфракрасной части спектра. Это поглощение — избирательное, поскольку разные газы атмосферы поглощают радиацию в разных участках спектра и в разной степени.

Азот поглощает радиацию только очень малых длин волн в ультрафиолетовой части спектра. Энергия солнечной радиации в этом участке спектра незначительна, и поэтому поглощение азотом практически не отражается на потоке солнечной радиации. В большей степени, но всё же очень мало, поглощает солнечную радиацию кислород. Более значительным поглотителем солнечной радиации является озон — он сильно поглощает ультрафиолетовую радиацию.

Сильно поглощает радиацию в инфракрасной области спектра углекислый газ.

Основным же поглотителем радиации в атмосфере является водяной пар, сосредоточенный в тропосфере и особенно в нижней её части.

Поглощают солнечную радиацию также облака и атмосферные примеси, т. е. твёрдые частицы, взвешенные в атмосфере.

В целом в атмосфере поглощается 15–20 % радиации, приходящей от Солнца к Земле. В каждом отдельном месте поглощение изменяется с течением времени и в зависимости как от переменного содержания в воздухе поглощающих субстанций, так и от высоты солнца над горизонтом, т. е. от толщины слоя воздуха, проходимого лучами на пути сквозь атмосферу.

Отражение солнечной радиации

Падая на земную поверхность, суммарная радиация в большей своей части поглощается в верхнем тонком слое почвы или воды и переходит в тепло, а частично отражается. Отражение солнечной радиации земной поверхностью зависит от характера этой поверхности.

Отношение количества отраженной солнечной радиации к общему количеству радиации, падающей на данную поверхность, называется альбедо поверхности. Это отношение выражается в процентах.

Альбедо поверхности почвы в общем заключается в пределах 10–30 %, растительного покрова — 10–25 %, снега — от 50 до 80–90 %.

Для верхней поверхности облаков альбедо может составлять от нескольких процентов до 70–80 %.

Альбедо гладкой водной поверхности для прямой радиации изменяется от нескольких процентов при высоком солнце до 70 % при низком расположении солнца. Оно зависит также от волнения. Для рассеянной радиации альбедо водных поверхностей составляет 5–10 %.

Преобладающая часть радиации, отражённой земной поверхностью и верхней поверхностью облаков, уходит за пределы земной атмосферы.

Литература

Гидрометеорологическое Обеспечение Мореплавания - Глухов В.Г., Гордиенко А.И., Шаронов А.Ю., Шматков В.А. [2014]

MirMarine
MirMarine – образовательный морской сайт для моряков.
На нашем сайте вы найдете статьи по судостроению, судоремонту и истории мирового морского флота. Характеристики судовых двигателей, особенности устройства вспомогательных механизмов и систем.