Датчики температуры

Датчик температуры – это устройство, которое позволяет измерить температуру объекта или вещества, используя при этом различные свойства и характеристики измеряемых тел или среды. Основой действия температурных датчиков в автоматизированном управлении является изменение температуры в электрический сигнал. Это обуславливает преимущества электрических измерений: результаты легко передавать по сети, скорость передачи может быть достаточно высокой.

Датчики нельзя устанавливать в следующих местах:

  • где может происходить вибрация датчика или механическое воздействие на него;
  • во взрывоопасной среде;
  • в химически агрессивной среде;
  • с большими электрическими помехами;
  • с большим рабочим давлением, чем указано в технических параметрах.

Критерии выбора датчика:

  1. Диапазон рабочей температуры.
  2. Возможность погружения датчика в объект измерения или среду. Если это невозможно, то лучше выбрать пирометр или термометр.
  3. Условия проведения замеров. Если нужно измерять в агрессивной среде, то надо выбирать датчик в коррозионностойком корпусе, или бесконтактного типа. Также следует определить наличие давления, влажности и т. д.
  4. Время работы датчика до калибровки или замены. Многие датчики не могут долго и стабильно работать (термисторы).
  5. Величина сигнала выхода: существуют датчики, выдающие сигнал по току, или в градусах.
  6. Технические данные: стабильность, погрешность, разрешение, напряжение.

По принципу измерения все датчики измерения температуры подразделяются на:

  • термоэлектрические (термопары);
  • интегральные;
  • темрорезистивные (термометр сопротивления);
  • акустические;
  • пирометры;
  • пьезоэлектрические.

Термопары

Термопары относятся к классу термоэлектрические преобразователи, принцип действия которых основан на явлении Зеебека: если спаи двух разнородных металлов, образующих замкнутую электрическую цепь, имеют неодинаковую температуру, то в цепи протекает электрический ток. Изменение знака у разности температур спаев сопровождается изменением направления тока. Под термоэлектрическим эффектом понимается генерирование термоэлектродвижущей силы (термо ЭДС), возникающей из-за разности температур между двумя соединениями различных металлов и сплавов.

Соединенные между собой концы термопары, погружаемые в среду, температура которой измеряется, называют рабочим концом термопары. Концы, которые находятся в окружающей среде, и которые обычно присоединяют проводами к измерительной схеме, называют свободными концами. Температуру этих концов необходимо поддерживать постоянной. При этом условии термо–ЭДС Еt будет зависеть только от температуры t1 рабочего конца.

где С – коэффициент, зависящий от материала проводников термопары.

Создаваемая термопарами ЭДС сравнительно невелика: она не превышает 8 мВ на каждые 100 °C и обычно не превышает по абсолютной величине 70 мВ. Термопары позволяют измерять температуру в диапазоне от –200 до 2200 °C.

Наибольшее распространение для изготовления термоэлектрических преобразователей получили платина, платинородий, хромель, алюмель.

Термопара типа ТХА, ТХК, ТПП и пр. состоит из двух спаянных на одном из концов проводников, изготовленных из металлов, обладающих разными термоэлектрическими свойствами. Спаянный конец, называемый «рабочим спаем», погружается в измеряемую среду, а свободные концы («холодный спай») подключаются к входу измерителей, регуляторов. Если температуры «рабочего» и «холодного спаев» различны, то вырабатывается термоЭДС которая, и подается на прибор. Поскольку термоЭДС зависит от разности температуры двух спаев датчика, то для получения корректных показаний необходимо знать температуру «холодного спая», чтобы скомпенсировать эту разницу в дальнейших вычислениях.

В модификациях входов, предназначенных для работы с термопарами ТХА, ТХК (термопреобразователями сопротивления ДТС типа ТСП и ТСМ, термоэлектрическими преобразователями, датчиками температуры, термосопротивлениями) предусмотрена схема автоматической компенсации температуры свободных концов. Датчиком температуры «холодного спая» служит полупроводниковый диод, установленный рядом с присоединительным клеммником.

Подключение термопар ТХА, ТХК (термопреобразователей сопротивления ДТС типа ТСП и ТСМ, термоэлектрических преобразователей) к датчику температуры (термопреобразователю) должно производиться с помощью специальных компенсационных (термоэлектродных) проводов, изготовленных из тех же материалов. Допускается использовать провода из металлов с термоэлектрическими характеристиками, аналогичными характеристикам материалов электродов термопары в диапазоне температур от 0..100 °С. При соединении компенсационных проводов с термопарами (термоэлектрическими преобразователями, термопреобразователями сопротивления) и прибором необходимо соблюдать полярность.

Во избежание влияния помех на измерительную часть прибора рекомендуется экранировать линию связи прибора с датчиком. При нарушении указанных условий могут иметь место значительные погрешности при измерении.

Преимущества:

  • простота изготовления;
  • надёжность в эксплуатации;
  • дешевизна;
  • отсутствие источников питания;
  • возможность измерений в большом диапазоне температур;
  • возможность измерения малых разностей температур;
  • возможность работы в агрессивных средах.

Недостатки:

  • меньшая, чем у терморезисторов, точность измерения;
  • наличие значительной тепловой инерционности;
  • необходимость введения поправки на температуру свободных концов;
  • необходимость в применении специальных соединительных проводов.

Датчики температуры

Интегральные датчики температуры отличаются от других типов термодатчиков тем, что работают в диапазоне, обычно ограниченном температурой от –55 до 150 °С. Часть интегральных датчиков температуры имеет указанный диапазон измерения, часть имеет более узкий диапазон, что обусловлено либо используемым типом корпуса, либо сделано для снижения стоимости. Самой главной отличительной особенностью интегральных датчиков по сравнению с другими типами датчиков температуры является их богатая функциональность. Интегральный кремниевый датчик температуры включает в себя термочувствительный элемент – первичный преобразователь температуры и схему обработки сигнала, выполненные на одном кристалле и заключенные в единый корпус. В отличие от использования термопар, в данном случае отсутствует необходимость разрабатывать схему компенсации холодного спая и схему линеаризации выходного сигнала. Также нет необходимости разрабатывать и применять внешние схемы компараторов или АЦП для преобразования аналоговых сигналов в логические уровни или цифровой код на выходе – все эти функции уже встроены в некоторые серии интегральных датчиков температуры.

Датчики температуры NSC можно разделить на пять групп:

  • датчики температуры с аналоговым выходом;
  • датчики температуры с цифровым выходом;
  • термостаты;
  • датчики температуры с выносным диодом;
  • датчики температуры с функциями управления.

Датчики температуры с выходом по напряжению могут иметь различную градуировку – по шкале Кельвина либо по шкале Цельсия. Датчики LM135, LM235, LM335 имеют выходное напряжение пропорциональное абсолютной температуре с номинальным значением температурного коэффициента составляющим 10 мВ/°К. При этом номинальное выходное напряжение при 0°С составляет 2,73 В, и 3,73 В при 100 °С. Обычно эти датчики включаются по схеме, представленной на рисунке 36 а. Третий вывод позволяет осуществлять подстройку точности, для этого используется подстроечный резистор. Температурная погрешность датчика LM135 без использования подстроечного резистора в диапазоне температур измерения –55...150 °С составляет ±2,7 °С, а с внешним подстроечным резистором уменьшается до ±1 °С в рамках всего рабочего диапазона.

Датчики LM35 и LM45 имеют выходное напряжение, пропорциональное шкале Цельсия (Кт = 10 мВ/°С). При температуре 25 °C эти датчики имеют на выходе напряжение 250 мВ, а при 100 °С на выходе – 1,0 В. Эти датчики могут применяться и для измерения отрицательных температур. Для этого используется согласующий резистор, который включается между выходным выводом и напряжением «ниже земли». Датчик LM50 является «однополярным», потому что он, в отличие от LM35 и LM45, может измерять отрицательные температуры без использования смещения. Этот датчик имеет чувствительность 10 мВ/°С и смещение на выходе 500 мВ (рисунок 36 б). Таким образом, на выходе будет 500 мВ при 0 °С, 100 мВ при –40 °С и 1,5 В при 100 °С.

Рассмотрим функциональный состав датчика этой группы на примере LM75. В состав входит непосредственно сам термочувствительный элемент, дельта-сигма АЦП, двухпроводной цифровой последовательный интерфейс I2C и регистры управления работой (рисунок 2.37). Температура измеряется постоянно, и может быть считана в любой момент времени. Существует возможность использования LM75 в качестве монитора температуры, который следит за ее изменениями и при выходе значения температуры за установленный предел, выдает логический сигнал на выходе – высокий или низкий уровень (знак можно задать). Таким образом, LM75 может являться ядром при построении системы управления температурой. Данные представляются 9-ти битным словом, из них один бит отводится на знак. Таким образом, разрешающая способность составляет 0,5 °С. Погрешность данного датчика в диапазоне температур –25…100 °С составляет ±2 °С, а в диапазоне –55…125 °С составляет ±3 °С.

Преимущества:

  • компактность, потому они легко встраиваются в усилители, регуляторы, микроконтроллеры и др. электронные приборы;
  • недороги в производстве;
  • линейная выходная характеристика;
  • широкий диапазон напряжений – от 4 до 30 В;
  • нечувствительность к падению напряжения на длинных линиях передачи сигнала.

Недостатки:

  • повышенная температурная чувствительность;
  • невысокая точность по сравнению с другими датчиками;
  • сравнительно низкая рабочая температура – не более 150 °С.

Термометр сопротивления

Термометр сопротивления – датчик, предназначенный для измерения температуры, принцип действия которого основан на зависимости электрического сопротивления металлов, сплавов и полупроводниковых материалов от температуры. При применении в качестве резистивного элемента полупроводниковых материалов его обычно называют термосопротивлением, терморезистором или термистором.

Терморезистор (термистор) – полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры.

Следует заметить, что не все устройства, изменяющие сопротивление с температурой, называются терморезисторами. Например, резистивные термометры, которые изготавливаются из маленьких катушек витой проволоки или из напыленных металлических плёнок, хотя их параметры и зависят от температуры, однако, работают не так, как терморезисторы. Обычно термин «терморезистор» применяется по отношению к чувствительным к температуре полупроводниковым устройствам. Терморезисторы с отрицательным ТКС изготавливаются из полупроводникового материала – спеченной керамики, изготовленной из смеси оксидов металлов. Терморезисторы широко применяются везде, и мы встречаемся с ними каждый день: на них основаны системы противопожарной безопасности, системы измерения и регулирования температуры, теплового контроля, схемы температурной компенсации, измерения мощности ВЧ. Обычно терморезисторы имеют отрицательный температурный коэффициент сопротивления, в отличие от большинства металлов и металлических сплавов.

Предполагая в качестве приближения первого порядка, что зависимость между сопротивлением и температурой линейна, тогда:

где ΔR – изменение сопротивления; ΔT – изменение температуры; k – температурный коэффициент сопротивления.

Термисторы можно разделить на два типа, в зависимости от классификации k. Если k положительно, сопротивление увеличивается с повышением температуры, и устройство называется термистором с положительным температурным коэффициентом (PTC) или позистором. Если k отрицательно, сопротивление уменьшается с повышением температуры, а устройство называется термистором с отрицательным температурным коэффициентом (NTC). Резисторы, которые не являются термисторами, рассчитаны на максимально возможное значение k как можно ближе к 0, так что их сопротивление остается почти постоянным в широком температурном диапазоне.

Вместо температурного коэффициента k иногда используется температурный коэффициент сопротивления. Он определяется как:

Когда ток проходит через терморезистор, он будет генерировать тепло, в результате которого температура терморезистора выше своего окружения. Если термистор используется для измерения температуры окружающей среды, это электрическое отопление может привести к существенной ошибке, если не будет производиться коррекция.

Металлический термометр сопротивления представляет собой резистор, изготовленный из металлической проволоки или металлической плёнки на диэлектрической подложке и имеющий известную зависимость электрического сопротивления от температуры.

Наиболее точный и распространённый тип термометров сопротивления – платиновые термометры. Это обусловлено тем, что платина имеет стабильную и хорошо изученную зависимость сопротивления от температуры и не окисляется в воздушной среде, что обеспечивает их высокую точность и воспроизводимость. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом 0,003 925 1/К при 0 °C.

В качестве рабочих средств измерений применяются также медные и никелевые термометры сопротивления. Начальное сопротивление изготовленного термосопротивления может быть произвольным с некоторым допуском.

Термометры сопротивления, изготовленные в виде напыленной на подложку металлической плёнки, отличаются повышенной вибропрочностью, но меньшим диапазоном рабочих температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов, составляет 660 °C (класс С), для плёночных – 600 °C (класс С).

Преимущества

  • высокая точность измерений (обычно лучше ±1 °C), может доходить до 13-ти тысячных °C (0,013);
  • возможность исключения влияния изменения сопротивления линий связи на результат измерения при использовании 3– или 4–проводной схемы измерений;
  • практически линейная характеристика;
  • простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени. Они могут иметь весьма малые размеры, что существенно для измерений температуры малых объектов и снижения инерционности измерения.

Недостатки

  • относительно малый диапазон измерений (по сравнению с термопарами);
  • дороговизна (в сравнении с термопарами из неблагородных металлов);
  • требуется дополнительный источник питания для задания тока через датчик.

Акустические термодатчики используются преимущественно для измерения средних и высоких температур и применяются в экстремальных условиях (в диапазоне криогенных температур, при высоких уровнях радиации в ядерных реакторах и т. д.), а также при проведении измерений в замкнутом герметичном объеме, где невозможно разместить контактные датчики или использовать пирометры. Состоят из пространственно-разнесенных излучателя и приемника акустических волн. Излучатель испускает сигнал, который проходит через исследуемую среду. Измеряя время прохождения сигнала известного расстояния между излучателем и приемником, и зная базовую скорость распространения ультразвука в данной среде при известной температуре, вычислитель считает скорость распространения при данной температуре, по которой затем вычисляется температура. Например, для газов зависимость скорости ультразвука от температуры выражается формулой:

где α – коэффициент, зависящий от давления, плотности, молекулярной массы газа.

Пример акустического датчика температуры приведен на рисунке 2.38.

Датчик состоит из трех компонентов: ультразвуковых передатчика и приемника, а также герметичной трубки, заполненной газом. Передатчик и приемник представляют собой керамические пьезоэлектрические пластины, акустически несвязанные с трубкой, что обеспечивает распространение звука преимущественно через газ внутри трубки. В качестве газа чаще всего используется сухой воздух. Тактовое устройство запускает передатчик, который посылает в трубку короткий ультразвуковой импульс, который пройдя через тестируемую среду трубки, принимается приемником. Время прохождения сигнала подается в контроллер, который вычисляет скорость распространения ультразвука, а затем определяет температуру тестируемой среды.

Миниатюрные акустические датчики температуры используют принцип модуляции (зависимости) частоты электронных генераторов, построенных на основе времязадающих элементов поверхностных акустических волн (ПАВ). Фактически, такие интегральные акустические датчики являются прямыми преобразователями температуры в частоту. Такие датчики имеют чувствительность в пределах нескольких кГц на градус.

Пирометры (тепловизоры)

Пирометр – прибор для бесконтактного измерения температуры тел, принцип действия которого основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света.

Бесконтактный тип термодатчиков, считывающих излучение, которое исходит от нагретых тел. Этот тип устройств позволяет измерять температуру дистанционно, без приближения к среде, в которой производятся замеры. Это позволяет работать с большими температурами и сильно разогретыми объектами без опасного сближения.

Пирометры можно разделить по нескольким основным признакам:

Оптические. Позволяют визуально определять, как правило, без использования специальных устройств, температуру нагретого тела, путём сравнения его цвета с цветом эталонной нити.

Радиационные. Оценивают температуру посредством пересчитанного показателя мощности теплового излучения. Если пирометр измеряет в широкой полосе спектрального излучения, то такой пирометр называют пирометром полного излучения.

Цветовые (другие названия: мультиспектральные, спектрального отношения) – позволяют делать вывод о температуре объекта, основываясь на результатах сравнения его теплового излучения в различных спектрах.

Пьезоэлектрические датчики температуры

Пьезоэлектрические датчики температуры – это прибор для бесконтактного измерения температуры тел, принцип действия которого основан при помощи кварцевого пьезорезонатора. При пьезоэлектрическом эффекте наблюдается зависимость частоты вибраций кварцевого кристалла от температуры. Именно на основе этого явления и реализуются пьезоэлектрические датчики температуры. Поскольку кварц является анизотропным материалом, резонансная частота пластины сильно зависит от угла среза кристалла (его кристаллографической ориентации).

В пьезоэлектрических датчиках температуры всегда очень сложно организовать хорошую тепловую связь кристалла с объектом измерения, поэтому они обладают худшим быстродействием по сравнению с термисторами и термоэлектрическими детекторами.

Pt 100

Наиболее используемый датчик температуры на судах является Pt 100, принцип работы которого основан на принципе изменения электрического сопротивления при повышении температуры. Изменение сопротивления преобразуется регулятором в температурное значение, которое показывается прибором.

Материалом является платина с сопротивлением 100 Ом при температуре 0 °C. Платина имеет положительный коэффициент зависимости сопротивления от температуры; с ростом температуры растёт сопротивление. Изменение сопротивления от температуры составляет 0,39 Ом/1 °C.

В одном датчике может быть несколько термосопротивлений Pt 100: 1, 2 или 3×Pt–100 (наиболее часто используется 1×Pt×100). Для разных измерительных цепей датчик может быть произведён в разных вариантах: 2-, 3- или 4-проводное подключение (наиболее точным является 4-проводное).

Конструкция Pt×100 представлена на рисунке 2.39. Термометр сопротивления расположен в специальной, заполненной окисью магния трубке толщиной 3 мм и различной длины. Гибкая часть термометра сопротивления начинается с 50 мм. Через вводную часть осуществляется соединение с гибким питающим проводом.

Конструкция Pt 100

Классы точности Pt100

Стандарт МЭК 60751 определяет классы точности термометров сопротивления Pt100 и соответствующие допуски. Классы допуска и диапазоны измерений для термопреобразователей сопротивления и чувствительных элементов представлены в таблице 2.4.

Цвета проводов, присоединяемых к термосопротивлению Pt 100, определены стандартом EN 60751. Цвета проводов для 2-, 3- и 4-проводного подключения, указаны в каждом типе датчиков на рисунке 2.40.

Классы допусков и диапазоны измерений для термопреобразователей сопротивления и чувствительных элементов

Схемы соединения внутренних проводов

Схемы включения термосопротивления в измерительную цепь:

  • 2-х проводная схема используется там, где не требуется высокой точности, так как сопротивление присоединительных проводов суммируется с измеренным сопротивлением, что приводит к появлению дополнительной погрешности;
  • 3-х проводная схема обеспечивает значительно более точные измерения, т.к. появляется возможность измерить сопротивление подводящих проводов и вычесть его из суммарного измеренного сопротивления;
  • 4-х проводная схема – наиболее точная схема, обеспечивает полное исключение влияния подводящих проводов.

Преимущества

  • быстрое время срабатывания;
  • небольшие размеры, компактная конструкция;
  • большой температурный диапазон;
  • гибкий питающий провод;
  • виброустойчивость.

Литература

Элементы и функциональные устройства судовой автоматики - Авдеев Б.А. [2018]

MirMarine
MirMarine – образовательный морской сайт для моряков.
На нашем сайте вы найдете статьи по судостроению, судоремонту и истории мирового морского флота. Характеристики судовых двигателей, особенности устройства вспомогательных механизмов и систем.